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Abstract

In this paper, we study lightlike submersions from a semi-Riemannian manifeld onto
a lightlike manifold having the dimension of radical distribution equal to one. Then
we study O’ Neill’s tensors for such submersions and investigate their properties.
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1. Introduction
The differential geometry of Riemannian immersions is known since the beginning
of Riemannian geometry. But its dual notion of Riemannian submersion was first ex-
posed in 1966 {Gray [5], O'Neill [6]). O’Neiil [6] defined Riemannian Submersions
as:

Let M and B be Riemannian manifolds. A Riemannian submersion 7 : M —
B is a mapping of M onto B satisfying the following axioms 5.1 and 5.2:

S.1 7 has maximal rank,

that is, each derivative map 7. of 7 is onto. Hence the implicit function theorem
states that the fibre 7771 (b) over any b € B, is a closed submanifold of M of dimen-
sion = dim M - dim B. A vector field on M is called vertical if it is always tangent
to the fibers and horizontal if orthogonal to the fibers.

S.2 7, preserves the lengths of horizontal vectors.

A systematic exposition on Riemannian submersions can be found in Besses
book {1]. Semi-Riemannian submersions were introduced by ONeijll in [7] and are
of interest in physics, owing to their applications in the Yang-Mills theory, Kaluza-
Klein theory, supergravity and superstring theories. It is known that when A and
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B are Riemannian manifolds, then the fibers are always Riemannian manifolds but
when the manifolds are semi-Riemannian manifolds, then the fibers may not be
semi-Riemannian. Recently, Sahin [8] defined a lightlike submersion from a semi-
Riemannian manifold M to a lightlike manifold B.

2. Lightlike Manifolds
We recall notations and fundamental equations for lightlike manifolds from [2].

Let (M, g) be a real m-dimensional paracompact and smooth manifold where
¢ is a symmetric tensor field of type (0, 2). Then, the radical or the null space of
T.{M) is a subspace of T(M), denoted by RadT (M), and defined by

RadT, M = {&, € RadT,,(M);g(£:, X) =0, X € T, M}. n
The dimension, say r, of RadT;{M) is called nullity degree of g. If the mapping
RadTM :x e M — Radl M, (2)

defines a smooth distribution on M of rank r > 0 then RadT M is called the radical
distribution of rank v on M. Clearly, g is degenerate or non-degenerate on M if
and only if » > 0 or r = 0, respectively. (M, g) is called a lightlike manifold
if 0 < v < m. Since M is paracompact therefore there exists a complementary
distribution S{T'M} to RadT M in TM and called screen distribution on M. Clearly,
S(T M) is semi-Riemannian therefore we have

TM = S5(I'M) ® RadT M. 3

The associated quadratic form h of type (p,g¢,r), wherep+ g +r =m,of gisa
mapping h : To(M) — R given by h({(X) = g(X,X) for any X € T, (M) and
locally given by

q q+p
h=-Y (w*)?+ Z (w™)?, 4}
a=1 A=q+1
where (w!, ......,w"*9) are linearly independent local differential forms on M. With -

respect to local coordinate system (z%), ¢ = 1,...,m, substitute w® = w,f‘dmi and

wi = w{ld:z:i in (4), we get
h = gijdz’ds’, rank|gi;| = p+q <m, )
q q+p
g = -y wiul+ Y wiuf, je{l..m) ©
asl . A=gtl

Let the r = 1 then 1-dimensional radical distribution RadT M is always integrable
and we have the following theorem.
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Theorem 2.1. [3} Let (M, g) be an m-dimensional lightlike manifold, with RadT A
of rank = 1. Then there exists a metric connection V on M with respect to the de-
generaie metric tensor g.

3. LightliXe Submersions

For lighttike submersions, we follow [8]. Let (M, g1) be a semi-Riemannian mani-
fold and (Mo, g2) an r-lightlike manifold. Consider a smooth submersion f : My —
M>, then f‘l(p) is a submanifold of M; of dimension dinM; - dimMy, forp € M.
The kernel of f, at the point p is given by

Kerf, = {X € Tp(M) : fo(X) =0}, (N
and (Kerf,)' is given by
(Kerf )" = {Y € Tp(M1) : q1(Y, X) = 0,¥X € Kerf.}. (8)

Since Tp( M) is a semi-Riemannian vector space therefore (Ker fx)* may not be a
complement io Kerf, and assume A = Kerf, N (Kerf,)*- # {0}. Thus we have
the following four cases of submersions.

Case 1. When 0 < dimA < min{dim(Kerf.), dim(Kerf,)*}

Then A is the radical subspace of T,(M1). Since Kerf, is a real lightlike vector
space, there is a complementary non-degenerate subspace to A, Let S(Kerf,) be a
complementary non-degenerate subspace to A in Ker f., therefore we have

Kerf. = ALS(Kerf). )

Similarly
(Kerf )t = ALS(Kerfo)*, (10

where S(Ker f.)* is a complementary subspace of A in (Kerf,)*. Since S(Ker )t
is non-degenerate in T,( M ), therefore we have

Ty(My) = S(Kerf.) L(S(Kerf))h, (11)

where (S(Kerf.))* is the complementary subspace of S(Ker f.) in T,,(M;). Since
S(Kerf.) and (S(Kerf,))" are non-degenerate therefore we have

(S(Kerf )yt = S(Kerf )t L(S(Kerf)h)t. (12)

Then from [3], there exists a quasi-orthonormal basis of T,{M;) along Kerf,, we
have '

9(&, &) = g(Ni, Nj) =0, gl&, N;) = &35, (13)
g(Wargj) = g(Wc’u NJ) = 01 Q(Wm Wﬁ) = fafsa,ﬁ) (14)
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foranyd,j € {1,...,7}and o, B € {1,..., ¢}, where { N;} are smooth lightlike vector
fields of (S{Ker f,)1)L, {£} is basis of A and W, is a basis of $(K er f.)*. Denote
the set of vector fields {N;} by ltr(Ker f,) and consider

tr(Kerf.) = ltr(Kerf.) LS(Kerf.)*. (15)

Using (13), it is clear that {t7(Ker f.) and Ker(f,) are not orthogonal to each other.
Denote ¥V = Ker f,, the vertical space of T,(M;) and H = tr(Ker f.), the horizon-
tal space then we have

T,(Mi) = V, ® Hp. (16)
Definition 3.1. Let (M, 1) be a semi-Riemannian manifold and (Ma, g2) an r-
lightlike manifold. Let f : M) — Mo be a submersion such that

@) dimA = dim{(Kerf.)n (Kerf )t} =r,
0 < r < min{dim(Kerf,), dim(Kerf.)*}.

(b} f. preserves the length of horizontal vectors, thatis, 91 (X, Y) = g2(f. X, fiY)
for X,Y € T(H).

Then f is called an r-lightlike submersion.

Case 2, When dimA = dim(Kerf.) < dim{Kerf.)'.

Then ¥V = A and H = S(Kerf )t Litr(Kerf.) and f is called an isotropic sub-
mersion.

Case 3. When dimA = dim(Kerf.)* < dim(Kerf,).

Then V = S(Kerf,)LA and H = ltr(Kerf,) and f is called a co-isotropic sub-
mersion.

Case 4. When dimA = dim(Ker f.) = dim(Kerf,)L1.

Then V = A and H = ltr(Ker f.) and f is called a totally lightlike submersion.

A basic vector field on M is a horizontal vector field X which is f-related to a
vector field X on Mo, that is, f.(X,) = X f(p) forall p € M. Every vector field X
on M> has a unique horizontal lift X to M; and X is basic. Therefore X © X is
4 one (o one correspondence between basic vector fields on M) and arbitrary vector
field on Mg.

Example. Let 1], ; and R ; , be R* and R? endowed with the Lorentzian metric
g1 = ~(dz1)?+(dz2)?+(dz3)?+(dz4)?, and degenerate metric g2 = (dys)%, where
T1,%2, T3, Z4 and y1,yo are the canonical coordinates on R* and K2, respectively.
Define a map

T2+ Tg
f: gR3,1,3 - §]?%,1,01 (x1, 72,73, T4) = (@1 + @3, 72 ).

Then the kernel of f, is given by

] i) 8 8
Kerf, = Span{W; = —--é-m—-}- B W2=_3_.’B2+3_x4}’
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and

d d a 0

L = —— =a—-t3—
(Kerf.)" = Span{Ty o1 + bzs’ 17 Bz + Ozy”

Clearly, we have Wy = 11, therefore
A = kerf, N (Kerf,)t = Span{W1}.

Then lrt(Ker f.) = Span{N = %(3‘3—1+32—3)} Easily we can show that g; (N, W;) =
1 and g, (V, Ws) = 0. Thus the horizontal and vertical spaces are given by

V = Span{W1, Wz}, H = Span{Th, N}.
Also f.(Ty) = V2 22, fo(N) = 3%. We also obtain that
G1(N,N) = go(fuN, f.N) = 0.
a(T2, T2) = g2(f. 73, 13} = 0.

Hence, f is a 1-lightlike submersion.

Leth : TM, — H and v : TM; — V denote the projections associated with
the direct sum decomposition TM; = H & V.
Theorem 3.2. Let (M, 1) be a semi-Riemannian manifold and (M2, g2) be a 1-
lightlike manifold. Let f : M7 — Ma be a lightlike submersion and denote by V
and V the Levi-Civita connections of M, and Ma, respectively. If X, Y are vector
fields, f-related to X, Y then

@) 91(X,Y) = g2(X, ¥)or.

(i) h[X,Y] is the basic vector field, f-related to [X, ¥].
(iii) h(VxY) is the basic vector field, f-related to V )"(Y/'
(iv) For any vertical vector field V, [ X, V] is vertical.

Proof. Property () immediately follows from the (b) of the definition 3.1. Property
(i) follows from f,[X,Y] = [X,Y]. Now from the Kozsul formula, we have

200(VxY,2) = X{a(Y,:2)} +Y(91(Z, X)) - Z(q1(X.Y)) - a1 (X, [V, Z])
+gl([Z:X]:Y)+gl(Z1[X,Y]): 17
forany X,Y, Z € T'(TM,). Considering X,Y, Z as the horizontal lifts of the vec-

tor fields X, Y, Z, respectively then we have X(g:(Y, 2)) = X(g2(Y,Z))of and
n([X,Y],Z2) = g2([X, Y], Z)of. Then (17) becomes

20(VxY,2) = X(@(, 2)of +¥ (a2, R))of - Z(ga(K,¥))of
_'9'2(X! [Yu Z])Of + 92([Z1 X]) Y)Of + 92(25 [Xs Y])Of
=20:(V Y, Z)of. (18)
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Thus from (18), the property (i1) follows, since f is surjective and Z is arbitrarily
chosen. Now, let V' € I'(V) then [ X, V] is f-related to [X, 0], hence (iv) follows.

4. Fundamental Tensors or Invariants for Lightlike Submersions
In this secticn, we define O’Neill’s [6] tensor for lightlike submersions. Let V be the
Levi-Civita connection of (M, g1), then define a tensor field T of type (1, 2) by

TxY = hVyxvY + vV, xhY. (19)
It is easy to prove that T satisfies the following properties.
(i) T is a vertical tensor field, that is, Tx =T, x,VX,Y € T'(TM).

(ii} T reverses the horizontal and vertical subspaces, that is, T;;(),) € Hp, Tu(H,) C
V,. 3 € T,(M,).

(iii) The integrability of the vertical distribution implies that 7" has symmetry prop-
erty for vertical vector fields, that is, Ty W = Ty V,VV, W € T'(V).

The other tensor is defined as
AxY = hVxvY + vV xhY. (20)
Again A is a (1, 2)-tensor and has following properties
(i) Ais a horizontal tensor field, that is, Ax = Apx,VX,Y € T'(TM,).
(ii) A also reverses the horizontal and vertical subspaces.

It should be noted that the tensor fields T" and A are skew-symmetric in the Rieman-
nian submersions but not in the case of lightlike submersions because the horizontal
and vertical subspaces are not orthogonal. In fact we have

Theorem 4.1. Let (M, g1) be a semi-Riemannian manifold and (M3, g») be a 1-
lightlike manifold. Let f : My — M5 be a lightlike submersion then

i ¢ (TvX,Y) + a5 (X, TvY) =0,
(i) 1(AzX,Y)+ ¢ (X,AzY) =0,

forany V € I'(Kerf.), Z € T(tr(Kerf.)) and X,Y € C(ltr(Kerf,)) or X €
L(S(Kerf.)) and Y € D(S{Kerf,)L) and vice-versa.

Proof. We prove (%) in two different cases.

Case . Let X\ Y e I'(itr(Kerf.)) and V € I'(Kerf,), then using (19) we get

Ty X = hVyvX 4+ vVyhX = vV X, 20D
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and
TvY = hVyvY + vVvRY = vV Y. (22)

Since Vg, = 0 therefore we get
Vau(X,Y) = a1i(Vv X,Y) + (X, VvY), 23)

then using (21)-(23), we obtain the result.
Case 2. Let X € ['(S(Kerf.))and Y € T(S(Kerf,)') and V € I'(Kerf.,), then
using (19) we get

Ty X = hVyvrX + vWyhX = hVy X. 24)

and
TvY = hVyrY + vV hY = vV Y, (25)

then using (23)-(25), the result follows. Similarly, we can prove (i) when X €
D(S(Kerf)')and Y € T(S(Kerf.))

The proof of (4%) is similar to that of (3).
Theorem 4.2. Let (Mj, ¢1) be a semi-Riemannian manifold and (M, g2) be a 1-
lightlike manifold. Let f : M1 — Mabea lightlike submersion then

O (V. X)+ g(V,TyX) =0,
(i) g1 (AxY, V) + g1 (Y, AxV) =0,

forany X,Y € I'(S(Kerf.}*) and U,V € T(S(Kerf,)).
Proof. We only prove (1), the proof of () being similar. Using (19) we get

TyV = hVyvV +uvVyhV = RVy V. (26)

and
TuX = hVyvX + vVyhX = vV X. (27)

Since Vg, = 0 therefore we get
Ugi(V, X) = ¢1(VuV, X) + ¢1(V, Vi X), (28)

then using (26)-(28), we obtain the result.‘
Form the above theorem, we may obtain Ty X from g; and Ty V and AxV
from g and AxY, where X,Y € ['(S(Kerf,)1).

From (19) and (20}, we have the following.
Lemma 4.3. Let f : M; — M, be a lightlike submersion then

() VpV =TV +0vVyV,
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(i) Vv X =hVy X +Tv X,
(iii) VxV = AxV +vVxV,
(iv) VxY = hVyY 4+ AxY,
forany X,Y € I'(tr(Kerf,)) and U,V € I'{Kerf.).
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