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Abstract

Warped product manifolds provide a natural frame work for time dependent mechan-
ical system and have applications in Physics (c¢f.[2],[11],[13]). The studies on warped
product manifolds with extrinsic geometric point of view intensified after B.Y.Chen’s
work on CR-warped product submanifolds of Kaehler manifolds (c¢f.[81,[9]). He in-
vestigated the existence of CR-submanifolds of a Kaehler manifold which are warped
product manifolds and established a characterization under which a CR-submanifold
reduces to a CR-warped product. Subsequently, similar studies are done in nearly
Kaehler manifolds as well (cf.[14],[15],[18]). The present note is devoted to study
semi-slant submanifolds of a nearly Kaehler manifold. In particular, a character-
ization is worked out under which a semi-slant submanifold of a nearly Kaehler
manifold reduces to a semi-slant warped product submanifold. The results presented
improve and extend the corresponding results of Kaehlerian settings.
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1. Introduction

R.L.Bishop and B.O’Neill [4], while investigating manifolds of negative sectional
curvatures generalized the notion of (Riemannian) product metric by homothetically
warping the product metric on to the fibers. To be more precise, if (M, g1) and
(Mo, g2) are Riemannian manifolds and f is a smooth function on Afq, then the
warped metric g on M) x Mz is defined as g = g1 + f2g. The manifold (M, x
My, g), denoted by My x ¢ M, is known as warped product of A7y and M. If
the warping function f is just a constant, the warped product metric reduces to a
Riemannian product. Bishop and O’Neill obtained some important properties of
these manifolds with intrinsic geometric point of view. Warped product manifolds
provide an excelient setting to model space-time near black holes or bodies with high
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gravitational fields (cf.[13]). The realization of these applications paved way for the
study of warped product manifolds with extrinsic geometric point of view.

It is known that a submanifold of an almost Hermitian manifold A7 is a CR-
product if it is locally a Riemannian product of a holomorphic submanifold Mt
and a totally real submanifold Af, of M. These submanifolds are CR-submanifoids
in the sense of A.Bejancu [3]. However, a CR-submanifold is not a CR-product
unless the two canonical distributions D and D+ on M are parallel. As a first step
in the study of warped product manifolds with extrinsic geometric point of view,
B.Y.Chen [8] considered CR-submanifolds of a Kaehler manifold as warped product
manifolds i.¢., submanifolds of the types My xy M, and M Xy Mr, termed as
CR-warped product and warped product CR-submanifolds respectively. He found
that warped product CR-submanifolds in a Kaehler manifold are trivial t.e., these
submanifolds are simply CR-products. However, non-trivial CR-warped products do
exist in a Kaehler manifold. The non-existence of a larger class of warped product
submanifolds namely the submanifolds of the type My x ¢ M, in a Kaehler manifold
(as well as in a nearly Kaehler manifold) M, where My is an arbitrary submanifold
of M, is established by V.A.Khan et.al. (cf. [1],[14]). A Kaehler manifold does not
admit even warped product submanifold of the type My x ¢ My (cf. [1L.[17]). That
means, the only non-trivial warped product submanifolds in a Kaehler manifold with
one of the factors a holomorphic submanifold is a CR-warped product submanifold.
On the other hand, a nearly Kaehler manifold may admit such warped products (see
Example 4.1).

~ B.Y.Chen [5] proved that a CR-submanifold of a Kaehler manifold is a CR-
product if and only if A1 D = 0. Since a CR-product is a special case of CR-
warped product, it is natural to seek conditions under which a CR-submanifold re-
duces to a CR-warped product. To this end, generalizing his earlier result, Chen [8]
showed that a CR-submanifold of a Kaehler manifold is a CR-warped product if and
onlyif AjzX =—(JXa)Z, X e Dand Z € D1 where c is a smooth function on
M such that Wa = 0 for each W € D+, Similar characterizations were obtained
for CR-warped products of nearly Kaehler manifolds by V.A.Khan et. al [15] and
B. Sahin [18]. Since CR-products in S are non-existent, K.Sekigawa [19] explored
CR-warped products in $® and obtained an example of the same. One of the next step
forward is to look for semi-slant warped products (a more general class of warped
products than the class of CR-warped products) in nearly Kaehler manifolds. Qur
study of these submanifolds has led us to obtain a characterization under which a
semi-slant submanifold of a nearly Kaehler manifold reduces to semi-slant warped
product, thereby generalize the resuit of Chen {51,[8], V.A.Khan et. al [15] and Sahin

[181.

2, Preliminaries
Let (Af, J, g} be an almost Hermitian manifold with an almost complcx structure J
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and Hermitian metric g. The Nijenhuis tensor 5 of J is defined as :
S(U,V) =[JU,JV] = U, V] - J[JU.V] = JU,JV]. UV eTr. (21)

Let ¥V be Levi-Civita connection on M. If J is parallel with respect to V, i.e. VJ =
0, then M is a Kaehler manifold. A more general structure on Af, known as nearly
Kaehler structure is defined by a weaker condition namely

(VuyYU =0 (2.2)

or equivalently B
(VuHV + (Vy U = 0.

A necessary and sufficient condition for a nearly Kaehler manifold to be a Kachler
manifold is the vanishing of the Nijenhuis tensor of J. Any four dimensional nearly
Kaehler manifold is a Kaehler manifold. A typical example of a nearly Kaehler,
non-Kaehler manifold is the six dimensional sphere §6. It has an almost complex
structure .J defined by the vector cross product in the space of purely imaginary Cay-
ley numbers (cf.[10]). This almost complex structure is not integrable and satisfies
(2.2). The Nijenhuis tensor S of .J on A satisfies:

S(U, V)= —4J(Vy )V (2.3)

Let V and V- be the induced Levi-Civita connections on the tangent bundle
TAf and the normal bundle T+ M of a submanifold A/ of M. Then Gauss and
Weingarten formulae are given by

VuV = VyV + (U, V) (2.4)
and
Vué = —AU + Ve (2.5)

forU,)V e TM and ¢ € T+-M; where h is the second fundamental form and A,
the shape operator (corresponding to the normal vector field £) of the immersion of
M into M. The two are related by

9(AcU, V) = g(h(U. V), §) (2.6)

where ¢ denotes the Riemannian metric on Af as well as the one induced on M.
Forany U € TM, we put

PU = tan(JU)} and FU = nor(JU), | (2.7)

where tan, and nor, are the natural projections associated to the direct sum decom-
position _
ToM =T, M&TLM, z€ M
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Similarly for &€ € T+ M, we put
t¢ = tan(JE) and f€ = nor{J§) (2.8)

That is P (resp. f)is a(1,1) tensor field on T'M (resp. TL Ay whereas ¢ (resp. F) is
a tangential (resp. normal) valued t-form on T+ M (resp. TM).

The covariant differentiations of the tensor fields I, F, t and f are defined
respectively as

(VyP)V =VyPV — PVyV, (2.9)
(VuF)V = V§EFV — FVyV, (2.10)
(Vut) = Vytl — tVye, (2.11)
(Vuf)e = Vi fE - fVGE. (2.12)

Furthermore, if we denote the tangential and normal parts of (Vg )V by PyV
and Qy;V respectively then on making use of (2.4),(2.5) and (2.7)-(2.12), we obtain

PyV = (VyP)V — ApyU — th(U, V), (2.13)

QuV = (VyF)V + (U, PV) — fR(U, V). (2.14)

A CR-submanifold M of an almost Hermitian manifold A{ is a submanifold
endowed with two orthogonal complementary distributions D and D+ such that D
is holomorphic i.e., JD; = D and D+ is totally real i.e., JD;- € T;-M for each
z € M, and TM = D ® DL, A CR-submanifold is holomorphic (resp. totally real)
if D+ = 0 (resp. D = 0). A CR-submanifold is proper if both the distributions D)
and D~ on M are non-trivial.

It is easy to observe that the angle between JX and PX is zero for each vector
field X € D whereas JZ, for each Z € D', makes an angle % from D (threfore,
orthogonal to the tangent bundle T'Af of the submanifold Af). This stand point gives
rise to a more general distribution, namely slant distribution on a submanifold of an
almost Hermition manifold. :

A distribution D? on a submanifold Af of an almost Hermitian manifold is
called a slant distribution if the wirtinger angle 6(X) € [0, 7/2] between JX and
DY has the same value @ for each z € M and X € T»(M), X # 0. A submanifold
M is called a slant submanifold if the tangent bundle TAf is slant. Holomorphic
and totally real submanifolds are special cases of slant submanifolds with wirtinger
angle 0 and /2 respectively. A slant submanifold is called proper slant if it is neither
holomorphic nor totally real (cf.[7]).

If M is a slant submanifold of an almost Hermitian manifold A/, then we have

P? = —cos?01, (2.15)
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where @ is the wirtinger angle of M in M. This gives
g(PU, PV) = cos*0g(U, V), (2.16)

g(FU, FV) = sin?8g(U, V), (2.17)
for U, V tangent to Af [7].

3. Semi-slant submanifolds
As a natural generalization of CR-submanifolds, N. Papaghiuc [16] introduced the
notion of semi-slant submanifolds as:

A submanifold A of an almost Hermitian manifold is called a semi-slant sub-
manifold if it is endowed with two orthogonal complementary distributions 2 and
D? such that D is holomorphic and D? is slant, A semi-slant submanifold M is
a CR-submanifold if the slant distribution D? on M is totally real, ie. 8 = =/2
whereas a semi-slant submanifold reduces to a slant submanifold if D = {0}. A
semi-slant submanifold is proper if # # 7 /2.

It follows straight away from the definition that for a semi-slant submanifold Af
of an almost Hermitian manifold A7, the tangent bundle TM and the normal bundle
T+ A are decomposed as

TM = D¢ D? (3.1)

and
TiM=FDqpu (3.2)

where 1 is the orthogonal complementary distribution to FD? in T+ A/ and is in-
variant under J. This means J¢ = f¢ for each § € u whereas f¢ € FDY for each
£ € FDY Moreover, following are some other easy observations

(o) FD={0}, (b) PD=D,

(3.3)
() PDP C D?,  (d) t(TLA) = DP.
In terms of P, F,t and f, we have
(e) PP+tF=-1I, (f)f°+Ft=-I,
(34)

(9) FP+ fF =0, (h)tf+Pt=0.

Throughout this section, M denotes a semi-slant submanifold of a nearly Kaehler
manifold M. With regard to the integrability conditions of the distributions in this
setting, we have:

Theorem 3.1. Let A/ be a semi-slant submanifold of a nearly Kaehler manifold A.
Then the following are equivalent
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(a) The holomorphic distribution D is involutive.
(b) A(X.JY)=Rh(JX,Y), and QxY =0.
(¢) 2g((VxJYY,JZ) = ¢(Vx PY-VyPX,PZ)+g(h(X, PY)—h(Y, PX), FZ),

foreach X,Y € Dand Z € D?
Proof, By formula (2.1),

(S(X, YD) = -F([JX. Y]+ [X,JY]),
where L stands for the normal part. On the other hand, by formula (2.3)
(S(X,Y)! =4QxJY.
From the last two equations,
4QxJY = —F([JX,Y] + X, JY]). (3.5)

Now, by virtue of nearly Kaehler condition, OxY — Qv X = 2Qx Y. Using this fact
in formulae (2.14) and (2.10), we get

20xY = FIY, X]+ h(X,JY) - h(Y. JX). (3.6)

If D is involutive, by (3.5), @xY = 0. Thus assuming D involutine on Af, we
obtain from (3.6) that h(X,JY) = h(Y,JX). Hence (a) implies (b). Conversely,
if A(X,JY) = h(Y,JX) and QxY = 0, then by (3.6), [X,Y] € D. Thatis, D is
involutive proving the equivalence.of (a) and (b).

For the egivalence of (a) and (¢}, consider g{[X,Y]. Z) for X.Y € D and
Z e DY,

g([X,Y), Z2) = g(VxY - Vv X, Z)
= g(JVxY,JZ) — g(IVy X,JZ) _
= g(VxJY — (Vx )Y, JZ) = g(VyIX — (Vy )X, ] Z).

Making use of Gauss formula and nearly Kaehler condition, the equation re-
duces to

o([X,Y],2) =g(VxJY = VyJX,PZ) + g(h(X,JY) — h(Y,JX),F Z)
- 29((VxJ)Y,JZ)

Thus D is involutive if and only if

2(Vx Y, JZ) = y(VxPY - VyPX,PZ)

+9(h(X,PY) — h(Y, PX),FZ). (3.7)
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Hence (a),(b) and (c) are equivalent.
In particular, if M is a CR-submanifold, the integrability condition (3.7) reduces
to:
29((Vx )Y, JZ) = g(h(X, PY) — WY, PX).FZ).

It can be deduced from the above equation that the holomorphic distribution on
a CR-submanifold of a Kaehler manifold is involutive if and only if

a(h(X,JY) — h(JX,Y),FZ) =0.

This condition is worked out by B.Y.Chen in [5].
Theorem 3.2. The slant distribution D? on a semi-slant submanifold Af of a nearly
Kaehler manifold is involutive if and only if

29(Vw 2. X) = g(VzPW + VwPZ — ApzW — ApwZ, PX),  (3.8)

foreach X € Dand Z,W € D*
Proof. Consider, g{[Z, V], X). We can write

(|2, W]. X) = g(VzW = VwZ,X) = g(JVzW - IVwZ,JX)
= g(szW - VwJZ — (sz)W + g(vw.])z, JX)

On making use of the formulae (2.4),(2.5), (2.7) and the nearly Kaehler condition, it.
can be deduced from the above equation that

(2. W], X) =g(VzPW - VwPZ + ApzW — Apw Z,JX)
+29((VwJ)Z,JX).

Further as
(Vw2 IX) = g(VwPZ — ApzW,JX) - g(VwZ, X),
the above equation takes the form

g([Z, W],X) = g(VzPW +VwPZ — ApzW — Apw Z,JX)
-2¢(VwZ,X)
The assertion follows from the above formula.
In particular, if M is a CR-submanifold, the integrability condition (3.8) takes

the following form. The totally real distribution on a CR-submanifold of a nearly
Kaehler manifold is involutive if and only if

20(VwZ,X) = —g(ArzW + Arw 2, JX).

It is known that the totally real distribution on a CR-submanifold of a Kaehler
manifold is involutive (cf. {5]). With regard to the geometry of its leaves, we have
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Corollary 3.1. The leaves of totally real distribution D on a CR-submanifold M
of a Kaehler manifold are totally geodesic in M if and only if

g(h(D, D), D) =0

Proof. In the given setting, AjzW = Ay Z (cf. [5]). Using this fact together with
formula (2.6) in the last equation, we get

9dVwZ, X)=—g(h{(JX, Z), JW)

for each X € D and Z, W € DL. The assertion follows from the above equation.
This fact is proved by Chen in [5].

With regard to the parallelism of D, we have
Theorem 3.3. Let M be a proper semi-slant submanifold of a nearly Kaehler mani-
fold M. Then the holomorphic distribution D is parallel if and only if

(VxP)Y € D

foreach X, Y € D.
Proof. If D is parallel, then by formula (2.9), (Vx P)Y € D. Conversely, suppose
that (VxP)Y € D forall X,Y € D, then by virtue of (2.9),

g(VxPY —~ PVxY,Z) =0 forall Z e D’

or
g(VxPY.Z)+ g(VxY,PZ)=0 (3.9)

Replacing Y by PY and Z by PZ in the above equation, yields
9(VxY,PZ) + cos®0g(VxPY,Z) =0 (3.10)
Subtracting (3.10} from (3.9), we obtain
Sin%0 g(VxPY,Z) =0
As M is a proper semi-slant submanifold, we have
9(VxPY,Z) =0,
foreach X, Y € Dand Z € DY That s, D is parallel.

4. Semi-slant submanifolds as warped product submanifolds

Let (M, g1) and {Afy, go) be two Riemannian manifolds with Riemannian metrics
g1 and go respectively. Then the product manifold Af = M x M is a Riemannian
manifold endowed with the Riemannian metric ¢ defined as

g(U, V) = g1(dmU, dm V) + go(dmaU, dma V') (4.1
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where m;{(i = 1,2) are the projection maps of M onto Ay and My respectively and
dm;(i = 1,2) are their differentials. Generalizing the product metric (4.1) warped
product of M; and M, is defined as:

Let f be a positive differentiable function on M;. Then the warped product
M) x§ Mj is the manifold My X Af> endowed with Riemannian metric g given by

g =i(g1) + (f o m)*m3(ge) (42)
More explicitly, if U7 is tangent to M = M) x; M2 at (p, q),‘ then
U1 = lldmU|® + >(@)lidmU|*.

The function f, in this case is known as the warping function (cf.[4]). If the warping
function f is just a constant, the warped product is simply a Riemannian product,
known as a trivial warped product. 7

Few important observations and formulae revealing some geometric aspects of
a warped product manifold are obtained by Bishop and O’Neill and are stated as
under:
Proposition 4.1. [4] Let M = M; x j M, be a warped product manifold. IfX,Ye
TAy and Z, W € T My, then

(i) VxY € TM,,
Gi) VxZ = VX = (XInf) 2,
(iii) nor(VzW) = —g(Z,W)Vinf

where nor(VzW) denotes the component of VzW in TM; and V f is the gradient
of f defined as '

g(ViU)=Uf (4.3)

forany U € TM.
Corollary 4.1. On a warped product manifold M = M; x5 Mo,

(i) M, is totally geodesic in A
(i) M, is totally umbilical in M.

Throughout, we denote by Mr, a holomorphic and My, a slant submanifold (with
wirtinget angle ) of an almost Hermitian manifold M.

A semi-slant submanifold of A which is a warped product manifold has the
form My x ¢ Mg or Mg x5 My. 1f 8 = %, these warped product submanifolds
reduce to CR-warped product and warped product CR-submanifolds respectively.
The existence of these submanifolds in Kaehler manifold is explored by B.Y.Chen



186 Kamran Khan and Vigar Azam Khan

[8] and in nearly Kaehler manifolds by V.A.Khan et. al [15]. For proper semi-
slant warped product submanifolds of Kaehler manifolds, B.Sahin established the
following:

Theorem 4.1. [17] Let M be a Kaehler manifold. Then there do not exist warped
product submanifolds My x f Mz and My x5 My in M such that My is a proper
slant submanifold and M7 is a holomorphic submanifold. :

One of the next steps of extending the study is to consider warped product

submanifolds with one of the factors a holomorphic submanifold and the other not
necessarily slant. These submanifolds are generic in the sense of B.Y,Chen [6]. Thus
if My is a submanifold of M, then My x § Mr and My x ¢ My are generic warped
product submanifolds of M. Generic warped product submanifolds of a Kaehler
manifold are trivial (cf. [1]). So far as generic warped products of nearly Kaehler
manifolds are concerned, V.A.Khan et. al [14] obtained.
Theorem 4.2.[14] Let M be a nearly Kaehler manifold and M = M, x fMpa
warped product submanifold of M with My and My a Riemannian and a holomor
phic submanifold of /. Then M is trivial i.e., M is locally a Riemannian product
of My and M.

As an immediate consequence of the above theorem non-trivial semi-slant warped
product of the type My x ; My are non-existent in a nearly Kaehler manifold. How-
ever, warped products of the form My x s My do exist in nearly Kaehler manifolds
e.g.,

Example 4.1.[19] Consider CR-submanifolds in S8, which is the image of 52 x $1
into S® under the immersion v defined as:

1/)(y: 2) = 710((?:(2: U4, yﬁ)i eit)
= (y2 cost)es — (yzsint)es + (y4 cos 2t)eq + (y4sin 2t)es
+ (ys cost)eg — (ygsint)er
fory = (y2,¥4,16) € S* and z = € € §1, t € R. Then consider the tangent
vectors
Z1 = —(y2sint)ez — (yacost)es ~ (2yssin 2t)eys + (2ys cos 2)es
— (ys sint)eg — (yg cost)er
Zy = (yscost)ez — (yssint)es — (y2 cost)es — (yasint)er
Z3 = (y6 cos 2t)eq + (yssin2t)es; — (ya cost)es — (yqsint)er
Let us denote span{Z;, Z3} by D and DL = span{Z;}. Then we can derive

that D is integrable. Denoting the integral manifolds of D and D+ by Mz and M,
respectively, the induced metric tensor is given by:

ds® =(v3 + 13)dy3 + yayadyodys + (4 + yD)dy? + (1 + 3y2)de?
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Thus it follows that M = Mg x; My is a CR-warped product submanifold of 5°
with warping function f = /(1 + 3y3).

QOur aim in this section is to prove the following
Theorem 4.3, A proper semi-slant submanifold M of a nearly Kaehler manifold
M is locally a semi-slant warped product if and only if (VxP)Y € D for each
X,Y € D such that

ApzX = -{(PXa)Z + (XTQ)-PZ], (4.4)

and .
29(VwZ,X) =g(VzPW + VwPZ, X)-2(Xa)g(Z, W) (4.5)

foreach X € D and Z,W € D?, where « is a C°-function on M with Wa = 0,
for each W € DP,

Let M = My xy Mp be a semi-slant warped product submanifold of a nearly
Kaehler manifold /. Then, as Mr is totally geodesic in M, (VxP)Y € D for each
X.Y € D and therefore by formula (2.13),

9(PxY,Z) = —g(th(X,Y), Z)
= g(MX,Y),FZ)

The left hand side is skew symmetric whereas the right hand side is symmetric in X
and Y in the above equation. That means '

9(W(X,Y),FZ) = ¢(PxY,Z) =0, (4.6)

foreach X,Y € Dand Z € D°.
Proof of Theorem 4.3. If M = My x y Mp is a semi-slant warped product submani-
fold of M, then by Corollary 4.1, M is totally geodesic in M and therefore by (2.9)
(VxP)Y € D.

Further, by formula (¢) in Proposition 4.1

Q(VWZ, X) = —g(VWXa Z) = _Xl'"'fg(za W)
On the other hand using the same formula, it follows that g(Vz PW +Vw PZ, X) =
0. This proves that for semi-slant warped product submanifolds of a nearly Kaehler
manifold, formula (4.5) holds.

Further, by (4.6), g{ ArzX,Y) = 0. That means

ApzXeD® XYeD ZeD® (4.7}
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Now, making use of nearly Kaehler condition and formula (2.13), we obtain
that
0= (VxP)Z+ (VzP)X - 2th(X,Z) — Arz X.

Using (2.9) and the formula (7Z) in Proposition 4.1, we deduce that
(VxP)Z =0 and (VzP)X = (PXInf)Z — (XInf)PZ.
On substituting the above values, the last equation takes the form
(PXInf)Z — (XInf)PZ = 2th(X,Z) + ArzX.
Taking product with W € D? in the above equation, gives
(Plezf')g(Z, W) —(Xinf)g(PZ,W) = —2¢(h(X, Z), FW)+g4(h(X, W), FZ),
which on simplifying yields
39(h(X, Z), FW) = =3(PXinf)g(Z, W) + (XInf)gy(PZ,W).
Interchanging Z and W, we get

Xinf
3

g(M(X,W),FZ) = - [( Jo(PZ, W)+ (PXInf)g(Z, W)]

Or,

Xinf
3

As it is observed in (4.7) that Apz X € D?, we deduce from the above equation that
Xinf

g{Apz X, W) = —[( )g(PZ, W)+ (PXInf)g(Z, W)]

ApzX = — [( \PZ + (PXEnf)Z].

This establishes (4.4).

Conversely, suppose that M is a semi-slant submanifold of a nearly Kaehler
manifold A with (Vx P)Y € D, foreach X,Y € D, and there exist a C°°- function
o on M such that We = 0 for each W € D? such that (4.4) and (4.5) hold.

The condition (VxP)Y € D, in view of the Theorem 3.3 implies that D is
parallel. That is, D is involutive and its leaves are totally geodesic in M.

On the other hand, the orthogonal complementary distribution D? of D on A
is involutive by virtue of equation (4.5).

Let Mpy be a leaf of D? and A° be the second fundamental form of My into M.
Then for any X € D and Z, W € D?, we have

g(R°(Z, W), JX) = g(VzW,JX)
= g(VzW,JX)
= —g(JVzW, X)
=g((Vz)W,X) - g(VzIW, X) (4.8)
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Thus, we have,
g(hO(Z,W),IX) = g(Vz )W, X) — g(V2PW, X) + g(Arw 2, X).  (4.9)

On interchanging Z and W and adding the obtained equation in (4.9) while using
nearly Kaehler condition, we get

2¢(h°(Z, W), JX) =g(Arw X, Z) + g(Arz X, W)
— g(V7PW + Vi PZ, X).

Making use of (4.4), (4.5) and (4.8) in the above equation, we get
g(R(Z, W), X + JX) = —[(Xa) + (JXa)lg(Z, W)
which on applying formula (4.3) takes the form:
g(h2(Z, W), X + JX) = —g(Vo, X + I X)g(Z,W).

Hence, .
g(R(Z, W), X) = —g(Va, X)g(Z, W)

foreach X € D and Z,W & D®. Hence, we have
RY(Z, W) = —g(Z, W)V

This implies that, the leaves of D? are totally umbilical in M. Further, the
condition Wo = 0 implies that the leaves of D? are extrinsic spheres in M.

Hence by the result of Hiepko [12] which states that “If the tangent bundle of a
Riemannian manifold M splits into an orthogonal sum TM = E, @ Fy of non-trivial
vector sub-bundles such that Ey is auto-parallel and its orthogonal complement Ey is
spherical, then the manifold M is locally isometric to the warped product N1 x § Ng”,
we conclude that M is locally a semi-slant warped product submanifold of M.
Corollary 4.2. A CR-submanifold of a nearly Kaehler manifold with (VxP)Y €D
X,Y € D, is a CR-warped product submanifold if and only if there exist a smooth
function a on M with Wa = 0 for all W € D+ such that the following conditions
are satisfied:

AJZX = -—(JXC!)Z, (4.10)

foreach X € Dand Z,W € D+,

Since PZ = 0 for each Z € D+, (4.10) and (4.11) follow immediately from
(4.4) and (4.5) respectively.
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Note. B.Sahin [18] proved a similar characterization under different set of conditions
whereas V.A Khan et. al [15] obtained the characterization with only condition (4.10)
while assuming the integrabilities of the two distributions on M.

In the setting of a CR-submanifold M of a Kaehler manifold M, the conditions
(4.4) and (4.5) reduce to (4.10) and (4.11) respectively. Condition (4.10) implies that
h(X,Y) € pforeach X,Y € D which means D is parallel i.e., D is integrable and
its leaves are totally geodesic in M. In particular {VxP)Y € D. Taking product
with W € D+ in (4.10) gives

9(AszX, W) = —(JX)g(2Z, W). (4.12)

Further, as M is assumed to be a CR-submanifold of M, we have
9(VuZ,X) = —g(AjzU,JX),foreach U € TM,X € Dand Z € D+ (cf.[5]).
In particular, for U = W e D, the above formula takes the form:

g(VWZ,X) = —g(AJzVV, .]X) = —g(AJz.fX, W)

The right hand side of the above equation, on using (4.12) reduces to —(X a)g(Z, W).
It is known that the totally real distribution D1 on 2 CR-submanifold of a Kachler
manifold is involutive (cf. [5]) Let M be a leaf of Dt and O, the second funda-
mental form of M, in M. Then the last equation may be written as:

g(B(Z, W), X) = —(Xa)g(Z,W).

Hence we get
RY(Z, W)= —g(Z, W)V

Further as Wa = 0 for each W € D1, we deduce that M, is an extrinsic sphere in
M. Hence, by the Theorem of Hiepko, M is locally isometric to a warped product
manifold Mz x; M, . Conversely, if M is a CR-warped product submanifold of a
.Kaehler manifold M, then it is straightforward to verify (4.10). Hence we conclude
that -

Corollary 4.3. Let M be a CR-submanifold of a Kaehler manifold M. Then M is a
CR-warped product submanifold if and only if

ApzX =—-(JXa)Z,

foreach X € D, Z € DL, where a is a smooth function on M such that Wa = 0
for each W € DL '

Note. The above corollary was proved by Chen [8] as a characterization for the ex-
istence of a CR-warped product submanifold in a Kaehler manifold. Thus, Theorem
4.3 provides a generalization of Chen’s Theorem.



Semi-Slant Submanifolds of a Nearly Kaehler Manifold 191

References

[1] ER.Al-Solamy and V.A.Khan, Non-existence of non-trivial generic warped
product in Kaehler manifolds, Note di Mathematica., 28 (2)(2008), 63-68.

[2] 1.K.Beem, PEhrlich and T.G.Powell, warped product manifolds in Relativity
in selected studies, North-Holland, Amsterdam, 1982,

(3] A.Bejancu, CR-submanifold of a Kaehler manifold I, Proc. Amer. Math. Soc.,
89 (1978), 135-142.

[4] R.L.Bishop and B.O’Neill', Manifolds of negative curvature, Trans. Amer.
Math. Soc., 145 (1969), 1-49.

[5] B.Y.Chen, CR-submanifolds of a Kaehler Manifold I, J. Diff. Geom., 16
(1981), 305-322,

[6] B.Y.Chen, Differential Geometry of a real submanifold in a Kaehler manifold,
Monatsh. Math., 91 (1981), 257 -275.

[7] B.Y.Chen, Geometry of slant-submanifolds, Katholieke Universiteit Leuven,
Leuven, (1990).

[8] B.Y.Chen, Geometry of warped product CR-submanifolds in Kaehler mani-
Jolds I, Monatsh. Math., 133 (2001), 177-195.

[9] B.Y.Chen, Geometry of warped product CR-submanifolds in Kaehler mani-
Jolds II, Monatsh, Math., 134 (2001), 103-119.

[10] T.Fukami and S. Ishihara, Almost Hermitian Structure on S, Tohoku Math.
J., 7(3) (1955), 151 -156.

[11] S.W.Hawkings and G.FR. Ellis, The large scale structure of space-time, Cam-
bridge Univ. Press, Cambridge, (1973).

(12] S.Hiepko, Eine Innere Kennzeichung der verzerrten Produkte, Math. Ann. 241
(1979), 209 -215.

[13] S.T.Hong, Warped products and black holes, Nuovo Cim, B120 (2005), 1227
-1234,

(14] V.AKhan and K.A.Khan, Generic warped product submanifolds of nearly
Kaehler manifolds, Contributions to Algebra and Geom., 50(2) (2009), 337-
352.



192 Kamran Khan and Vigar Azam Khan

[15] V.A.Khan, K.A.Khan and Siraj-Uddin, Warped product CR-submanifolds in
nearly Kaehler manifolds, SUT Journal of Mathematics, 43 (2) (2007), 201-
213.

[16] N.Papaghiuc, Semi-siant submanifolds of Kaehler manifold, An. St. Univ. AL
1. Cuza. Iasi, 40 (1994), 55-61.

[17) B.Sahin, Non-existence of warped product semi-slant submanifolds of Kaehler
manifold, Geom. Dedicata., 1172 (2006), 195-202.

[18] B.Sahin, CR-warped product submanifolds of nearly Kaehler manifolds, Con-
tributions to Algebra and Geometry, 49(2) (2008), 383-397.

[19] K.Sekigawa, Some CR-submanifolds in 6-dimensional sphere, Tensor (N.S.),
41 (1984), 13 -20.



