Jour. Tensor Society

Vol. 6 No. 2 (2012) 177-192

(S.I. Husain commemorative issue)

Semi-Slant Submanifolds of a Nearly Kaehler Manifold

ISSN: 0974-5428

Kamran Khan and Vigar Azam Khan

Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India E-mail:viqarster@gmail.com

Abstract

Warped product manifolds provide a natural frame work for time dependent mechanical system and have applications in Physics (cf.[2],[11],[13]). The studies on warped product manifolds with extrinsic geometric point of view intensified after B.Y.Chen's work on CR-warped product submanifolds of Kaehler manifolds (cf.[8],[9]). He investigated the existence of CR-submanifolds of a Kaehler manifold which are warped product manifolds and established a characterization under which a CR-submanifold reduces to a CR-warped product. Subsequently, similar studies are done in nearly Kaehler manifolds as well (cf.[14],[15],[18]). The present note is devoted to study semi-slant submanifolds of a nearly Kaehler manifold. In particular, a characterization is worked out under which a semi-slant submanifold of a nearly Kaehler manifold reduces to a semi-slant warped product submanifold. The results presented improve and extend the corresponding results of Kaehlerian settings.

Keywords and phrases: Warped product, Semi-slant submanifold, Nearly Kaehler manifold.

2000 AMS Subject Classification: 53C40, 53C42, 53B25.

1. Introduction

R.L.Bishop and B.O'Neill [4], while investigating manifolds of negative sectional curvatures generalized the notion of (Riemannian) product metric by homothetically warping the product metric on to the fibers. To be more precise, if (M_1, g_1) and (M_2, g_2) are Riemannian manifolds and f is a smooth function on M_1 , then the warped metric g on $M_1 \times M_2$ is defined as $g = g_1 + f^2 g_2$. The manifold $(M_1 \times M_2, g)$, denoted by $M_1 \times_f M_2$ is known as warped product of M_1 and M_2 . If the warping function f is just a constant, the warped product metric reduces to a Riemannian product. Bishop and O'Neill obtained some important properties of these manifolds with intrinsic geometric point of view. Warped product manifolds provide an excellent setting to model space-time near black holes or bodies with high

gravitational fields (cf.[13]). The realization of these applications paved way for the study of warped product manifolds with extrinsic geometric point of view.

It is known that a submanifold of an almost Hermitian manifold $ar{M}$ is a CRproduct if it is locally a Riemannian product of a holomorphic submanifold M_T and a totally real submanifold M_{\perp} of \bar{M} . These submanifolds are CR-submanifolds in the sense of A.Bejancu [3]. However, a CR-submanifold is not a CR-product unless the two canonical distributions D and D^{\perp} on M are parallel. As a first step in the study of warped product manifolds with extrinsic geometric point of view, B.Y.Chen [8] considered CR-submanifolds of a Kaehler manifold as warped product manifolds i.e., submanifolds of the types $M_T \times_f M_\perp$ and $M_\perp \times_f M_T$, termed as CR-warped product and warped product CR-submanifolds respectively. He found that warped product CR-submanifolds in a Kaehler manifold are trivial i.e., these submanifolds are simply CR-products. However, non-trivial CR-warped products do exist in a Kaehler manifold. The non-existence of a larger class of warped product submanifolds namely the submanifolds of the type $M_0 \times_f M_T$, in a Kaehler manifold (as well as in a nearly Kaehler manifold) \bar{M} , where M_0 is an arbitrary submanifold of \overline{M} , is established by V.A.Khan et.al. (cf. [1],[14]). A Kaehler manifold does not admit even warped product submanifold of the type $M_T \times_f M_0$ (cf. [1],[17]). That means, the only non-trivial warped product submanifolds in a Kaehler manifold with one of the factors a holomorphic submanifold is a CR-warped product submanifold. On the other hand, a nearly Kaehler manifold may admit such warped products (see Example 4.1).

B.Y.Chen [5] proved that a CR-submanifold of a Kaehler manifold is a CRproduct if and only if $A_{JD^{\perp}}D=0$. Since a CR-product is a special case of CRwarped product, it is natural to seek conditions under which a CR-submanifold reduces to a CR-warped product. To this end, generalizing his earlier result, Chen [8] showed that a CR-submanifold of a Kaehler manifold is a CR-warped product if and only if $A_{JZ}X = -(JX\alpha)Z$, $X \in D$ and $Z \in D^{\perp}$ where α is a smooth function on M such that $W\alpha = 0$ for each $W \in D^{\perp}$. Similar characterizations were obtained for CR-warped products of nearly Kaehler manifolds by V.A.Khan et. al [15] and B. Sahin [18]. Since CR-products in S^6 are non-existent, K.Sekigawa [19] explored CR-warped products in S^6 and obtained an example of the same. One of the next step forward is to look for semi-slant warped products (a more general class of warped products than the class of CR-warped products) in nearly Kaehler manifolds. Our study of these submanifolds has led us to obtain a characterization under which a semi-slant submanifold of a nearly Kaehler manifold reduces to semi-slant warped product, thereby generalize the result of Chen [5], [8], V.A.Khan et. al [15] and Sahin [18].

2. Preliminaries

Let (\bar{M},J,g) be an almost Hermitian manifold with an almost complex structure J

and Hermitian metric g. The Nijenhuis tensor S of J is defined as:

$$S(U,V) = [JU,JV] - [U,V] - J[JU,V] - J[U,JV]. \quad U,V \in T\bar{M}.$$
 (2.1)

Let ∇ be Levi-Civita connection on \bar{M} . If J is parallel with respect to $\bar{\nabla}$, i.e. $\bar{\nabla}J=0$, then \bar{M} is a Kaehler manifold. A more general structure on \bar{M} , known as nearly Kaehler structure is defined by a weaker condition namely

$$(\bar{\nabla}_U J)U = 0 \tag{2.2}$$

or equivalently

$$(\bar{\nabla}_U J)V + (\bar{\nabla}_V J)U = 0.$$

A necessary and sufficient condition for a nearly Kaehler manifold to be a Kaehler manifold is the vanishing of the Nijenhuis tensor of J. Any four dimensional nearly Kaehler manifold is a Kaehler manifold. A typical example of a nearly Kaehler, non-Kaehler manifold is the six dimensional sphere S^6 . It has an almost complex structure J defined by the vector cross product in the space of purely imaginary Cayley numbers (cf.[10]). This almost complex structure is not integrable and satisfies (2.2). The Nijenhuis tensor S of J on \overline{M} satisfies:

$$S(U,V) = -4J(\bar{\nabla}_U J)V \tag{2.3}$$

Let ∇ and ∇^{\perp} be the induced Levi-Civita connections on the tangent bundle TM and the normal bundle $T^{\perp}M$ of a submanifold M of \bar{M} . Then Gauss and Weingarten formulae are given by

$$\bar{\nabla}_{U}V = \nabla_{U}V + h(U, V) \tag{2.4}$$

and

$$\bar{\nabla}_U \xi = -A_{\xi} U + \nabla_U^{\perp} \xi \tag{2.5}$$

for $U,V\in TM$ and $\xi\in T^\perp M$; where h is the second fundamental form and A_ξ , the shape operator (corresponding to the normal vector field ξ) of the immersion of M into \bar{M} . The two are related by

$$g(A_{\xi}U,V) = g(h(U,V),\xi) \tag{2.6}$$

where g denotes the Riemannian metric on \overline{M} as well as the one induced on M. For any $U \in TM$, we put

$$PU = tan(JU) \text{ and } FU = nor(JU),$$
 (2.7)

where tan_x and nor_x are the natural projections associated to the direct sum decomposition

$$T_x \bar{M} = T_x M \oplus T_x^{\perp} M, \ x \in M$$

٠,١

Similarly for $\xi \in T^{\perp}M$, we put

$$t\xi = tan(J\xi) \text{ and } f\xi = nor(J\xi)$$
 (2.8)

That is P (resp. f) is a (1,1) tensor field on TM (resp. $T^{\perp}M$) whereas t (resp. F) is a tangential (resp. normal) valued 1-form on $T^{\perp}M$ (resp. TM).

The covariant differentiations of the tensor fields P, F, t and f are defined respectively as

$$(\bar{\nabla}_U P)V = \nabla_U PV - P\nabla_U V, \tag{2.9}$$

$$(\bar{\nabla}_U F)V = \nabla_U^{\perp} F V - F \nabla_U V, \tag{2.10}$$

$$(\ddot{\nabla}_U t)\xi = \nabla_U t\xi - t\nabla_U^{\perp}\xi, \qquad (2.11)$$

$$(\bar{\nabla}_U f)\xi = \nabla_U^{\perp} f \xi - f \nabla_U^{\perp} \xi. \tag{2.12}$$

Furthermore, if we denote the tangential and normal parts of $(\bar{\nabla}_U J)V$ by $\mathcal{P}_U V$ and $\mathcal{Q}_U V$ respectively then on making use of (2.4),(2.5) and (2.7)-(2.12), we obtain

$$\mathcal{P}_{U}V = (\bar{\nabla}_{U}P)V - A_{FV}U - th(U, V), \tag{2.13}$$

$$Q_U V = (\bar{\nabla}_U F)V + h(U, PV) - fh(U, V). \tag{2.14}$$

A CR-submanifold M of an almost Hermitian manifold \bar{M} is a submanifold endowed with two orthogonal complementary distributions D and D^{\perp} such that D is holomorphic i.e., $JD_x = D_x$ and D^{\perp} is totally real i.e., $JD_x^{\perp} \subseteq T_x^{\perp}M$ for each $x \in M$, and $TM = D \oplus D^{\perp}$. A CR-submanifold is holomorphic (resp. totally real) if $D^{\perp} = 0$ (resp. D = 0). A CR-submanifold is proper if both the distributions D and D^{\perp} on M are non-trivial.

It is easy to observe that the angle between JX and PX is zero for each vector field $X \in D$ whereas JZ, for each $Z \in D^{\perp}$, makes an angle $\frac{\pi}{2}$ from D^{\perp} (threfore, orthogonal to the tangent bundle TM of the submanifold M). This stand point gives rise to a more general distribution, namely slant distribution on a submanifold of an almost Hermition manifold.

A distribution D^{θ} on a submanifold M of an almost Hermitian manifold is called a slant distribution if the wirtinger angle $\theta(X) \in [0, \pi/2]$ between JX and D^{θ}_x has the same value θ for each $x \in M$ and $X \in T_x(M)$, $X \neq 0$. A submanifold M is called a slant submanifold if the tangent bundle TM is slant. Holomorphic and totally real submanifolds are special cases of slant submanifolds with wirtinger angle 0 and $\pi/2$ respectively. A slant submanifold is called proper slant if it is neither holomorphic nor totally real (cf.[7]).

If M is a slant submanifold of an almost Hermitian manifold \bar{M} , then we have

$$P^2 = -\cos^2\theta I,\tag{2.15}$$

where θ is the wirtinger angle of M in \bar{M} . This gives

$$g(PU, PV) = \cos^2\theta g(U, V), \tag{2.16}$$

$$g(FU, FV) = \sin^2\theta g(U, V), \tag{2.17}$$

for U, V tangent to M [7].

3. Semi-slant submanifolds

As a natural generalization of CR-submanifolds, N. Papaghiuc [16] introduced the notion of semi-slant submanifolds as:

A submanifold M of an almost Hermitian manifold is called a semi-slant submanifold if it is endowed with two orthogonal complementary distributions D and D^{θ} such that D is holomorphic and D^{θ} is slant. A semi-slant submanifold M is a CR-submanifold if the slant distribution D^{θ} on M is totally real, i.e. $\theta = \pi/2$ whereas a semi-slant submanifold reduces to a slant submanifold if $D = \{0\}$. A semi-slant submanifold is proper if $\theta \neq \pi/2$.

It follows straight away from the definition that for a semi-slant submanifold M of an almost Hermitian manifold \tilde{M} , the tangent bundle TM and the normal bundle $T^{\perp}M$ are decomposed as

$$TM = D \oplus D^{\theta} \tag{3.1}$$

and

$$T^{\perp}M = FD^{\theta} \oplus \mu \tag{3.2}$$

where μ is the orthogonal complementary distribution to FD^{θ} in $T^{\perp}M$ and is invariant under J. This means $J\xi = f\xi$ for each $\xi \in \mu$ whereas $f\xi \in FD^{\theta}$ for each $\xi \in FD^{\theta}$. Moreover, following are some other easy observations

(a)
$$FD = \{0\},$$
 (b) $PD = D,$
(c) $PD^{\theta} \subseteq D^{\theta},$ (d) $t(T^{\perp}M) = D^{\theta}.$ (3.3)

In terms of P, F, t and f, we have

(e)
$$P^2 + tF = -I$$
, (f) $f^2 + Ft = -I$,
(g) $FP + fF = 0$, (h) $tf + Pt = 0$. (3.4)

Throughout this section, M denotes a semi-slant submanifold of a nearly Kaehler manifold \bar{M} . With regard to the integrability conditions of the distributions in this setting, we have:

Theorem 3.1. Let M be a semi-slant submanifold of a nearly Kaehler manifold \overline{M} . Then the following are equivalent

- (a) The holomorphic distribution D is involutive.
- (b) h(X, JY) = h(JX, Y), and $Q_XY = 0$.

(c)
$$2g((\bar{\nabla}_X J)Y, JZ) = g(\nabla_X PY - \nabla_Y PX, PZ) + g(h(X, PY) - h(Y, PX), FZ),$$

for each $X, Y \in D$ and $Z \in D^{\theta}$ **Proof.** By formula (2.1),

$$(S(X,Y))^{\perp} = -F([JX,Y] + [X,JY]),$$

where \perp stands for the normal part. On the other hand, by formula (2.3)

$$(S(X,Y))^{\perp} = 4Q_X JY.$$

From the last two equations,

$$4Q_X JY = -F([JX, Y] + [X, JY]). (3.5)$$

Now, by virtue of nearly Kaehler condition, $Q_XY - Q_YX = 2Q_XY$. Using this fact in formulae (2.14) and (2.10), we get

$$2Q_XY = F[Y, X] + h(X, JY) - h(Y, JX). \tag{3.6}$$

If D is involutive, by (3.5), $Q_XY=0$. Thus assuming D involutine on M, we obtain from (3.6) that h(X,JY)=h(Y,JX). Hence (a) implies (b). Conversely, if h(X,JY)=h(Y,JX) and $Q_XY=0$, then by (3.6), $[X,Y]\in D$. That is, D is involutive proving the equivalence of (a) and (b).

For the equivalence of (a) and (c), consider g([X,Y],Z) for $X,Y\in D$ and $Z\in D^{\theta}$.

$$\begin{split} g([X,Y],Z) &= g(\bar{\nabla}_X Y - \bar{\nabla}_Y X, Z) \\ &= g(J\bar{\nabla}_X Y, JZ) - g(J\bar{\nabla}_Y X, JZ) \\ &= g(\bar{\nabla}_X JY - (\bar{\nabla}_X J)Y, JZ) - g(\bar{\nabla}_Y JX - (\bar{\nabla}_Y J)X, JZ). \end{split}$$

Making use of Gauss formula and nearly Kaehler condition, the equation reduces to

$$g([X,Y],Z) = g(\nabla_X JY - \nabla_Y JX, PZ) + g(h(X,JY) - h(Y,JX), FZ) - 2g((\bar{\nabla}_X J)Y, JZ)$$

Thus D is involutive if and only if

$$2g((\bar{\nabla}_X J)Y, JZ) = g(\nabla_X PY - \nabla_Y PX, PZ) + q(h(X, PY) - h(Y, PX), FZ).$$
(3.7)

Hence (a),(b) and (c) are equivalent.

In particular, if M is a CR-submanifold, the integrability condition (3.7) reduces to:

$$2g((\nabla XJ)Y,JZ) = g(h(X,PY) - h(Y,PX).FZ).$$

It can be deduced from the above equation that the holomorphic distribution on a CR-submanifold of a Kaehler manifold is involutive if and only if

$$g(h(X, JY) - h(JX, Y), FZ) = 0.$$

This condition is worked out by B.Y.Chen in [5].

Theorem 3.2. The slant distribution D^{θ} on a semi-slant submanifold M of a nearly Kaehler manifold is involutive if and only if

$$2g(\nabla_W Z. X) = g(\nabla_Z PW + \nabla_W PZ - A_{FZ}W - A_{FW}Z, PX), \tag{3.8}$$

for each $X \in D$ and $Z, W \in D^{\theta}$

Proof. Consider, g([Z, W], X). We can write

$$\begin{split} g([Z,W],X) &= g(\bar{\nabla}_Z W - \bar{\nabla}_W Z, X) = g(J\bar{\nabla}_Z W - J\bar{\nabla}_W Z, JX) \\ &= g(\bar{\nabla}_Z JW - \bar{\nabla}_W JZ - (\bar{\nabla}_Z J)W + g(\bar{\nabla}_W J)Z, JX) \end{split}$$

On making use of the formulae (2.4),(2.5), (2.7) and the nearly Kaehler condition, it can be deduced from the above equation that

$$g([Z, W], X) = g(\nabla_Z PW - \nabla_W PZ + A_{FZ}W - A_{FW}Z, JX) + 2g((\bar{\nabla}_W J)Z, JX).$$

Further as

$$g((\bar{\nabla}_W J)Z, JX) = g(\nabla_W PZ - A_{FZ}W, JX) - g(\nabla_W Z, X),$$

the above equation takes the form

$$g([Z, W], X) = g(\nabla_Z PW + \nabla_W PZ - A_{FZ}W - A_{FW}Z, JX)$$
$$-2g(\nabla_W Z, X)$$

The assertion follows from the above formula.

In particular, if M is a CR-submanifold, the integrability condition (3.8) takes the following form. The totally real distribution on a CR-submanifold of a nearly Kaehler manifold is involutive if and only if

$$2g(\nabla_W Z, X) = -g(A_{FZ}W + A_{FW}Z, JX).$$

It is known that the totally real distribution on a CR-submanifold of a Kaehler manifold is involutive (cf. [5]). With regard to the geometry of its leaves, we have

Corollary 3.1. The leaves of totally real distribution D^{\perp} on a CR-submanifold M of a Kaehler manifold are totally geodesic in M if and only if

$$g(h(D, D^{\perp}), JD^{\perp}) = 0$$

Proof. In the given setting, $A_{JZ}W = A_{JW}Z$ (cf. [5]). Using this fact together with formula (2.6) in the last equation, we get

$$g(\nabla_W Z, X) = -g(h(JX, Z), JW)$$

for each $X \in D$ and $Z, W \in D^{\perp}$. The assertion follows from the above equation. This fact is proved by Chen in [5].

With regard to the parallelism of D, we have

Theorem 3.3. Let M be a proper semi-slant submanifold of a nearly Kaehler manifold \overline{M} . Then the holomorphic distribution D is parallel if and only if

$$(\bar{\nabla}_X P)Y \in D$$

for each $X, Y \in D$.

Proof. If D is parallel, then by formula (2.9), $(\bar{\nabla}_X P)Y \in D$. Conversely, suppose that $(\bar{\nabla}_X P)Y \in D$ for all $X, Y \in D$, then by virtue of (2.9),

$$g(\nabla_X PY - P\nabla_X Y, Z) = 0$$
 for all $Z \in D^\theta$

or

$$g(\nabla_X PY, Z) + g(\nabla_X Y, PZ) = 0$$
(3.9)

Replacing Y by PY and Z by PZ in the above equation, yields

$$g(\nabla_X Y, PZ) + \cos^2 \theta g(\nabla_X PY, Z) = 0$$
(3.10)

Subtracting (3.10) from (3.9), we obtain

$$Sin^2\theta \ g(\nabla_X PY, Z) = 0$$

As M is a proper semi-slant submanifold, we have

$$g(\nabla_X PY, Z) = 0,$$

for each $X, Y \in D$ and $Z \in D^{\theta}$. That is, D is parallel.

4. Semi-slant submanifolds as warped product submanifolds

Let (M_1, g_1) and (M_2, g_2) be two Riemannian manifolds with Riemannian metrics g_1 and g_2 respectively. Then the product manifold $M = M_1 \times M_2$ is a Riemannian manifold endowed with the Riemannian metric g defined as

$$g(U,V) = g_1(d\pi_1 U, d\pi_1 V) + g_2(d\pi_2 U, d\pi_2 V)$$
(4.1)

where $\pi_i(i=1,2)$ are the projection maps of M onto M_1 and M_2 respectively and $d\pi_i(i=1,2)$ are their differentials. Generalizing the product metric (4.1) warped product of M_1 and M_2 is defined as:

Let f be a positive differentiable function on M_1 . Then the warped product $M_1 \times_f M_2$ is the manifold $M_1 \times M_2$ endowed with Riemannian metric g given by

$$g = \pi_1^*(g_1) + (f \circ \pi_1)^2 \pi_2^*(g_2) \tag{4.2}$$

More explicitly, if U is tangent to $M=M_1\times_f M_2$ at (p,q), then

$$||U||^2 = ||d\pi_1 U||^2 + f^2(p)||d\pi_2 U||^2.$$

The function f, in this case is known as the warping function (cf.[4]). If the warping function f is just a constant, the warped product is simply a Riemannian product, known as a trivial warped product.

Few important observations and formulae revealing some geometric aspects of a warped product manifold are obtained by Bishop and O'Neill and are stated as under:

Proposition 4.1. [4] Let $M = M_1 \times_f M_2$ be a warped product manifold. If $X, Y \in TM_1$ and $Z, W \in TM_2$, then

- (i) $\nabla_X Y \in TM_1$,
- (ii) $\nabla_X Z = \nabla_Z X = (X \ln f) Z$,
- (iii) $nor(\nabla_Z W) = -g(Z, W)\nabla lnf$

where $nor(\nabla_Z W)$ denotes the component of $\nabla_Z W$ in TM_1 and ∇f is the gradient of f defined as

$$q(\nabla f, U) = Uf \tag{4.3}$$

for any $U \in TM$.

i

Corollary 4.1. On a warped product manifold $M = M_1 \times_f M_2$,

- (i) M_1 is totally geodesic in M
- (ii) M_2 is totally umbilical in M.

Throughout, we denote by M_T , a holomorphic and M_{θ} , a slant submanifold (with wirtinget angle θ) of an almost Hermitian manifold \bar{M} .

A semi-slant submanifold of \overline{M} which is a warped product manifold has the form $M_T \times_f M_\theta$ or $M_\theta \times_f M_T$. If $\theta = \frac{\pi}{2}$, these warped product submanifolds reduce to CR-warped product and warped product CR-submanifolds respectively. The existence of these submanifolds in Kaehler manifold is explored by B.Y.Chen

[8] and in nearly Kaehler manifolds by V.A.Khan et. al [15]. For proper semislant warped product submanifolds of Kaehler manifolds, B.Sahin established the following:

Theorem 4.1. [17] Let \bar{M} be a Kaehler manifold. Then there do not exist warped product submanifolds $M_{\theta} \times_f M_T$ and $M_T \times_f M_{\theta}$ in \bar{M} such that M_{θ} is a proper slant submanifold and M_T is a holomorphic submanifold.

One of the next steps of extending the study is to consider warped product submanifolds with one of the factors a holomorphic submanifold and the other not necessarily slant. These submanifolds are generic in the sense of B.Y.Chen [6]. Thus if M_0 is a submanifold of \bar{M} , then $M_0 \times_f M_T$ and $M_T \times_f M_0$ are generic warped product submanifolds of \bar{M} . Generic warped product submanifolds of a Kaehler manifold are trivial (cf. [1]). So far as generic warped products of nearly Kaehler manifolds are concerned, V.A.Khan et. al [14] obtained.

Theorem 4.2.[14] Let \overline{M} be a nearly Kaehler manifold and $M=M_0\times_f M_T$ a warped product submanifold of \overline{M} with M_0 and M_T a Riemannian and a holomorphic submanifold of \overline{M} . Then M is trivial i.e., M is locally a Riemannian product of M_0 and M_T .

As an immediate consequence of the above theorem non-trivial semi-slant warped product of the type $M_{\theta} \times_f M_T$ are non-existent in a nearly Kaehler manifold. However, warped products of the form $M_T \times_f M_{\theta}$ do exist in nearly Kaehler manifolds e.g.,

Example 4.1.[19] Consider CR-submanifolds in S^6 , which is the image of $S^2 \times S^1$ into S^6 under the immersion ψ defined as:

$$\psi(y,z) = \psi((y_2, y_4, y_6), e^{it})$$

$$= (y_2 \cos t)e_2 - (y_2 \sin t)e_3 + (y_4 \cos 2t)e_4 + (y_4 \sin 2t)e_5$$

$$+ (y_6 \cos t)e_6 - (y_6 \sin t)e_7$$

for $y=(y_2,y_4,y_6)\in S^2$ and $z=e^{it}\in S^1,\ t\in\mathbb{R}.$ Then consider the tangent vectors

$$Z_1 = -(y_2 \sin t)e_2 - (y_2 \cos t)e_3 - (2y_4 \sin 2t)e_4 + (2y_4 \cos 2t)e_5$$
$$- (y_6 \sin t)e_6 - (y_6 \cos t)e_7$$
$$Z_2 = (y_6 \cos t)e_2 - (y_6 \sin t)e_3 - (y_2 \cos t)e_6 - (y_2 \sin t)e_7$$
$$Z_3 = (y_6 \cos 2t)e_4 + (y_6 \sin 2t)e_5 - (y_4 \cos t)e_6 - (y_4 \sin t)e_7$$

Let us denote $span\{Z_2, Z_3\}$ by D and $D^{\perp} = span\{Z_1\}$. Then we can derive that D is integrable. Denoting the integral manifolds of D and D^{\perp} by M_T and M_{\perp} respectively, the induced metric tensor is given by:

$$ds^{2} = (y_{6}^{2} + y_{2}^{2})dy_{2}^{2} + y_{2}y_{4}dy_{2}dy_{4} + (y_{6}^{2} + y_{4}^{2})dy_{4}^{2} + (1 + 3y_{4}^{2})dt^{2}$$

= $g_{M_{T}} + (1 + 3y_{4}^{2})g_{M_{1}}$

Thus it follows that $M = M_T \times_f M_\theta$ is a CR-warped product submanifold of S^6 with warping function $f = \sqrt{(1+3y_4^2)}$.

Our aim in this section is to prove the following

Theorem 4.3. A proper semi-slant submanifold M of a nearly Kaehler manifold \overline{M} is locally a semi-slant warped product if and only if $(\overline{\nabla}_X P)Y \in D$ for each $X,Y \in D$ such that

$$A_{FZ}X = -[(PX\alpha)Z + \frac{(X\alpha)}{3}PZ], \tag{4.4}$$

and

$$2g(\nabla_W Z, X) = g(\nabla_Z PW + \nabla_W PZ, X) - 2(X\alpha)g(Z, W) \tag{4.5}$$

for each $X \in D$ and $Z, W \in D^{\theta}$, where α is a C^{∞} -function on M with $W\alpha = 0$, for each $W \in D^{\theta}$.

Let $M=M_T\times_f M_\theta$ be a semi-slant warped product submanifold of a nearly Kaehler manifold \bar{M} . Then, as M_T is totally geodesic in M, $(\bar{\nabla}_X P)Y\in D$ for each $X,Y\in D$ and therefore by formula (2.13),

$$g(\mathcal{P}_X Y, Z) = -g(th(X, Y), Z)$$
$$= g(h(X, Y), FZ)$$

The left hand side is skew symmetric whereas the right hand side is symmetric in X and Y in the above equation. That means

$$g(h(X,Y), FZ) = g(\mathcal{P}_X Y, Z) = 0,$$
 (4.6)

for each $X, Y \in D$ and $Z \in D^{\theta}$.

Proof of Theorem 4.3. If $M = M_T \times_f M_\theta$ is a semi-slant warped product submanifold of \bar{M} , then by Corollary 4.1, M_T is totally geodesic in M and therefore by (2.9) $(\bar{\nabla}_X P)Y \in D$.

Further, by formula (ii) in Proposition 4.1

$$g(\nabla_W Z, X) = -g(\nabla_W X, Z) = -X ln f g(Z, W).$$

On the other hand using the same formula, it follows that $g(\nabla_Z PW + \nabla_W PZ, X) = 0$. This proves that for semi-slant warped product submanifolds of a nearly Kaehler manifold, formula (4.5) holds.

Further, by (4.6), $g(A_{FZ}X, Y) = 0$. That means

$$A_{FZ}X \in D^{\theta}, \quad X, Y \in D, \ Z \in D^{\theta}$$
 (4.7)

Now, making use of nearly Kaehler condition and formula (2.13), we obtain that

$$0 = (\bar{\nabla}_X P)Z + (\bar{\nabla}_Z P)X - 2th(X, Z) - A_{FZ}X.$$

Using (2.9) and the formula (ii) in Proposition 4.1, we deduce that

$$(\bar{\nabla}_X P)Z = 0$$
 and $(\bar{\nabla}_Z P)X = (PXlnf)Z - (Xlnf)PZ$.

On substituting the above values, the last equation takes the form

$$(PXlnf)Z - (Xlnf)PZ = 2th(X, Z) + A_{FZ}X.$$

Taking product with $W \in D^{\theta}$ in the above equation, gives

$$(PXlnf)g(Z,W) - (Xlnf)g(PZ,W) = -2g(h(X,Z),FW) + g(h(X,W),FZ),$$

which on simplifying yields

$$3g(h(X,Z),FW) = -3(PXlnf)g(Z,W) + (Xlnf)g(PZ,W).$$

Interchanging Z and W, we get

$$g(h(X,W),FZ) = -\left[\left(\frac{Xlnf}{3}\right)g(PZ,W) + (PXlnf)g(Z,W)\right]$$

or,

$$g(A_{FZ}X,W) = -\left[\left(\frac{Xlnf}{3}\right)g(PZ,W) + (PXlnf)g(Z,W)\right].$$

As it is observed in (4.7) that $A_{FZ}X \in D^{\theta}$, we deduce from the above equation that

$$A_{FZ}X = -\left[\left(\frac{Xlnf}{3}\right)PZ + (PXlnf)Z\right].$$

This establishes (4.4).

Conversely, suppose that M is a semi-slant submanifold of a nearly Kaehler manifold \overline{M} with $(\overline{\nabla}_X P)Y \in D$, for each $X,Y \in D$, and there exist a C^{∞} -function α on M such that $W\alpha = 0$ for each $W \in D^{\theta}$ such that (4.4) and (4.5) hold.

The condition $(\bar{\nabla}_X P)Y \in D$, in view of the Theorem 3.3 implies that D is parallel. That is, D is involutive and its leaves are totally geodesic in M.

On the other hand, the orthogonal complementary distribution D^{θ} of D on M is involutive by virtue of equation (4.5).

Let M_{θ} be a leaf of D^{θ} and h^0 be the second fundamental form of M_{θ} into M. Then for any $X \in D$ and $Z, W \in D^{\theta}$, we have

$$g(h^{0}(Z, W), JX) = g(\nabla_{Z}W, JX)$$

$$= g(\bar{\nabla}_{Z}W, JX)$$

$$= -g(J\bar{\nabla}_{Z}W, X)$$

$$= g((\bar{\nabla}_{Z}J)W, X) - g(\bar{\nabla}_{Z}JW, X)$$
(4.8)

Thus, we have,

$$q(h^{0}(Z, W), JX) = g((\bar{\nabla}_{Z}J)W, X) - g(\nabla_{Z}PW, X) + g(A_{FW}Z, X).$$
 (4.9)

On interchanging Z and W and adding the obtained equation in (4.9) while using nearly Kaehler condition, we get

$$2g(h^{0}(Z,W),JX) = g(A_{FW}X,Z) + g(A_{FZ}X,W) - g(\nabla_{Z}PW + \nabla_{W}PZ,X).$$

Making use of (4.4), (4.5) and (4.8) in the above equation, we get

$$g(h^0(Z, W), X + JX) = -[(X\alpha) + (JX\alpha)]g(Z, W)$$

which on applying formula (4.3) takes the form:

$$g(h^0(Z, W), X + JX) = -g(\nabla \alpha, X + JX)g(Z, W).$$

Hence,

$$g(h^0(Z, W), X) = -g(\nabla \alpha, X)g(Z, W)$$

for each $X \in D$ and $Z, W \in D^{\theta}$. Hence, we have

$$h^0(Z, W) = -g(Z, W)\nabla\alpha.$$

This implies that, the leaves of D^{θ} are totally umbilical in M. Further, the condition $W\alpha=0$ implies that the leaves of D^{θ} are extrinsic spheres in M.

Hence by the result of Hiepko [12] which states that "If the tangent bundle of a Riemannian manifold M splits into an orthogonal sum $TM = E_1 \oplus E_0$ of non-trivial vector sub-bundles such that E_1 is auto-parallel and its orthogonal complement E_0 is spherical, then the manifold M is locally isometric to the warped product $N_1 \times_f N_0$ ", we conclude that M is locally a semi-slant warped product submanifold of M.

Corollary 4.2. A CR-submanifold of a nearly Kaehler manifold with $(\bar{\nabla}_X P)Y \in D$ $X,Y \in D$, is a CR-warped product submanifold if and only if there exist a smooth function α on M with $W\alpha = 0$ for all $W \in D^{\perp}$ such that the following conditions are satisfied:

$$A_{JZ}X = -(JX\alpha)Z, (4.10)$$

$$g(\nabla_W Z, X) = -(X\alpha)g(Z, W), \tag{4.11}$$

for each $X \in D$ and $Z, W \in D^{\perp}$.

Since PZ = 0 for each $Z \in D^{\perp}$, (4.10) and (4.11) follow immediately from (4.4) and (4.5) respectively.

Note. B.Sahin [18] proved a similar characterization under different set of conditions whereas V.A.Khan et. al [15] obtained the characterization with only condition (4.10) while assuming the integrabilities of the two distributions on M.

In the setting of a CR-submanifold M of a Kaehler manifold \overline{M} , the conditions (4.4) and (4.5) reduce to (4.10) and (4.11) respectively. Condition (4.10) implies that $h(X,Y) \in \mu$ for each $X,Y \in D$ which means D is parallel i.e., D is integrable and its leaves are totally geodesic in M. In particular $(\overline{\nabla}_X P)Y \in D$. Taking product with $W \in D^{\perp}$ in (4.10) gives

$$g(A_{JZ}X, W) = -(JX\alpha)g(Z, W). \tag{4.12}$$

Further, as M is assumed to be a CR-submanifold of \bar{M} , we have $g(\nabla_U Z, X) = -g(A_{JZ}U, JX)$, for each $U \in TM, X \in D$ and $Z \in D^{\perp}$ (cf.[5]). In particular, for $U = W \in D^{\perp}$, the above formula takes the form:

$$g(\nabla_W Z, X) = -g(A_{JZ}W, JX) = -g(A_{JZ}JX, W).$$

The right hand side of the above equation, on using (4.12) reduces to $-(X\alpha)g(Z,W)$. It is known that the totally real distribution D^{\perp} on a CR-submanifold of a Kaehler manifold is involutive (cf.[5]). Let M_{\perp} be a leaf of D^{\perp} and h^0 , the second fundamental form of M_{\perp} in M. Then the last equation may be written as:

$$g(h^0(Z, W), X) = -(X\alpha)g(Z, W).$$

Hence we get

$$h^0(Z, W) = -g(Z, W)\nabla\alpha.$$

Further as $W\alpha=0$ for each $W\in D^\perp$, we deduce that M_\perp is an extrinsic sphere in M. Hence, by the Theorem of Hiepko, M is locally isometric to a warped product manifold $M_T\times_f M_\perp$. Conversely, if M is a CR-warped product submanifold of a Kaehler manifold M, then it is straightforward to verify (4.10). Hence we conclude that

Corollary 4.3. Let M be a CR-submanifold of a Kaehler manifold \overline{M} . Then M is a CR-warped product submanifold if and only if

$$A_{JZ}X = -(JX\alpha)Z,$$

for each $X \in D, Z \in D^{\perp}$, where α is a smooth function on M such that $W\alpha = 0$ for each $W \in D^{\perp}$.

Note. The above corollary was proved by Chen [8] as a characterization for the existence of a CR-warped product submanifold in a Kaehler manifold. Thus, Theorem 4.3 provides a generalization of Chen's Theorem.

References

- [1] F.R.Al-Solamy and V.A.Khan, Non-existence of non-trivial generic warped product in Kaehler manifolds, Note di Mathematica., 28 (2)(2008), 63-68.
- [2] J.K.Beem, P.Ehrlich and T.G.Powell, warped product manifolds in Relativity in selected studies, North-Holland, Amsterdam, 1982.
- [3] A.Bejancu, CR-submanifold of a Kaehler manifold I, Proc. Amer. Math. Soc., 89 (1978), 135-142.
- [4] R.L.Bishop and B.O'Neill, *Manifolds of negative curvature*, Trans. Amer. Math. Soc., 145 (1969), 1-49.
- [5] B.Y.Chen, CR-submanifolds of a Kaehler Manifold I, J. Diff. Geom., 16 (1981), 305-322.
- [6] B.Y.Chen, Differential Geometry of a real submanifold in a Kaehler manifold, Monatsh. Math., 91 (1981), 257 -275.
- [7] B.Y.Chen, Geometry of slant-submanifolds, Katholieke Universiteit Leuven, Leuven, (1990).
- [8] B.Y.Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds I, Monatsh. Math., 133 (2001), 177-195.
- [9] B.Y.Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds II, Monatsh. Math., 134 (2001), 103-119.
- [10] T.Fukami and S. Ishihara, Almost Hermitian Structure on S⁶, Tohoku Math. J., 7(3) (1955), 151-156.
- [11] S.W.Hawkings and G.F.R. Ellis, The large scale structure of space-time, Cambridge Univ. Press, Cambridge, (1973).
- [12] S.Hiepko, Eine Innere Kennzeichung der verzerrten Produkte, Math. Ann. 241 (1979), 209 -215.
- [13] S.T.Hong, Warped products and black holes, Nuovo Cim, B120 (2005), 1227 -1234.
- [14] V.A.Khan and K.A.Khan, Generic warped product submanifolds of nearly Kaehler manifolds, Contributions to Algebra and Geom., 50(2) (2009), 337-352.

- [15] V.A.Khan, K.A.Khan and Siraj-Uddin, Warped product CR-submanifolds in nearly Kaehler manifolds, SUT Journal of Mathematics, 43 (2) (2007), 201-213.
- [16] N.Papaghiuc, Semi-slant submanifolds of Kaehler manifold, An. St. Univ. AI.I. Cuza. Iasi, 40 (1994), 55-61.
- [17] B.Sahin, Non-existence of warped product semi-slant submanifolds of Kaehler manifold, Geom. Dedicata., 1172 (2006), 195-202.
- [18] B.Sahin, CR-warped product submanifolds of nearly Kaehler manifolds, Contributions to Algebra and Geometry, 49(2) (2008), 383-397.
- [19] K.Sekigawa, Some CR-submanifolds in 6-dimensional sphere, Tensor (N.S.), 41 (1984), 13-20.