In the present paper, we have introduced the concept of \((\alpha, \beta, \gamma)\) – metric and find some important tensors for \((\alpha, \beta, \gamma)\) – metric, where
\[
\alpha = a_{ij}(x) y^i y^j / 2, \quad 1\text{-form} \quad \beta = b_i(x) y^i, \quad \text{cubic metric} \quad \gamma = a_{ijk}(x) y^i y^j y^k / 3.
\]
We have also considered the hypersurface given the equation \(b(x) = \text{constant}\) of the Finsler space with the \((\alpha, \beta, \gamma)\) – metric given by \(L = L(\alpha, \beta, \gamma)\).

Keywords: Finsler Space with \((\alpha, \beta, \gamma)\) – metric; cubic metric; one form metric; angular metric tensor; fundamental tensor and reciprocal tensor.

1. Introduction

Matsumoto, M. in the year 1972 \(^5\), introduced the notion of \((\alpha, \beta)\) – metric and studied in detail. A Finsler metric \(L(x, y)\) is called an \((\alpha, \beta)\) – metric, if it is positively homogenous function of degree one in Riemannian metric \(\alpha = \{a_{ij}(x) y^i y^j\}^{1/2}\) and 1-form \(\beta = b_i(x) y^i\). The well-known examples of \((\alpha, \beta)\) – metric are Rander’s metric \(\alpha + \beta\) \(^{10}\), Kropina metric \(\alpha^2 / 2\) \(^3\), generalized Kropina metric \(\frac{\alpha^{m+1}}{2m} (m \neq 0, -1)^\frac{1}{3}\), and Matsumoto metric \(\frac{\alpha}{\alpha - \beta}\) \(^7\) etc, whose studies have greatly contributed to the growth of Finsler geometry.

Again in the year 1979, Matsumoto, M. \(^4\) introduced the concept of cubic metric on a differentiable manifold with the local co-ordinates, defined by

\[
L(x, y) = \{a_{ijk}(x) y^i y^j y^k\}^{1/3}.
\]

where, \(a_{ijk}(x)\) are components of a symmetric tensor field of \((0, 3)\) -type depending on the position \(x\) alone, and a Finsler space with a cubic metric is called the cubic Finsler space.
After that several authors also studied the cubic Finsler spaces3, 5, 12, 13, 14, 15. In the year 2011, Pandey, T. N. and Chaubey, V. K.,9 had introduced the concept of \((\gamma, \beta)\) – metric and a number of propositions and theorems obtained, where \(\gamma = \{a_{ijk}(x) y^i y^j y^k\}^{1/3}\) is a cubic metric and \(\beta = b_i(x) y^i\) is a one-form metric.

After studying these valuable research papers, we have introduced the \((\alpha, \beta, \gamma)\)– metric, where \(\alpha = \{a_{ij}(x) y^i y^j\}^{1/2}\), 1-form \(\beta = b_i(x) y^i\) and cubic-metric, \(\gamma = \{a_{ijk}(x) y^i y^j y^k\}^{1/3}\). In the year 1995, Matsumoto, M.,6 had discussed the properties of special hypersurface of Rander space with \(b_i(x) = (\partial i b)\) being the gradient of a scalar function \(b_i(x)\) and also consider a hypersurface which is given by \(b_i(x) = \text{constant}\).

In this paper we have also considered the hypersurface given by the equation \(b_i(x) = \text{constant}\), of the Finsler space with \((\alpha, \beta, \gamma)\)– metric.

\section{Basic tensors of \((\alpha, \beta, \gamma)\) – metric}

\textbf{Definition :} A Finsler metric \(L(x, y)\) is called a \((\alpha, \beta, \gamma)\) – metric, when \(L\) is positively homogenous function \(L(\alpha, \beta, \gamma)\) of first degree in the variables \(\alpha, \beta\) and \(\gamma\), where \(\gamma = \{a_{ijk}(x) y^i y^j y^k\}^{1/3}\) is a cubic metric and \(\beta = b_i(x) y^i\) is a one-form metric.

In this present paper we have used the following results
\[
a_{ijk}(x) y^i y^k = a_i, \quad a_{ijk} y^k = a_{ij} a_{ij} b_j = b_i, \quad a_i a_i = \gamma^3
\]
where, \((a^{ij})\) is the inverse matrix of \((a_{ij})\).

As for \((\alpha, \beta, \gamma)\) – metric,
\[
L = L(\alpha, \beta, \gamma) \quad \text{(2.1)}
\]

Where,
\[
\alpha = \{a_{ij}(x) y^i y^j\}^{1/2}, \quad \beta = b_i(x) y^i \quad \text{and} \quad \gamma = \{a_{ijk}(x) y^i y^j y^k\}^{1/3} \quad \text{(2.2)}
\]

Differentiating (2.2), we get,
\[
\frac{\partial \alpha}{\partial y^r} = \frac{\partial \alpha}{\partial y}, \quad \text{where} \quad a_{ir} y^r = y_i, \quad b_r = \frac{\partial \beta}{\partial y^r} \quad \text{and} \quad \frac{\partial \gamma}{\partial y^r} = \frac{\partial \gamma}{\partial y^r} \quad \text{(2.3)}
\]

Again differentiating (2.1) with respect to \(y^r\), we get,
\[
l_i = \partial_i L, \quad \text{where} \quad \partial_i L = \frac{\partial L}{\partial y^i}
\]
\[
l_i = \frac{L_{\alpha}}{\alpha} y_i + L_{\beta} b_i + \frac{L_{\gamma}}{\gamma^2} a_i \quad \text{(2.4)}
\]
Further subscripts \(\alpha, \beta, \gamma \) denote partial differentiations with respect to \(\alpha, \beta, \gamma \) respectively.

Again differentiating (2.4) with respect to \(y^j \), the angular metric tensor
\[h_{ij} = L \partial_i \partial_j L \] is given by

\[
h_{ij} = P^*_0 a_{ij}(x) + P_{-1} a_{ij}(x, y) + q^*_2 y_i y_j + q^*_{-1} (y_i b_j + y_j b_i) + q^*_{-3} (a_i y_j + a_j y_i)
+ q_{-2} (a_i b_j + a_j b_i) + q_{-4} a_i a_j + q_0 b_i b_j \]

(2.5)

Where,

\[
P^*_0 = \frac{L a_0}{\alpha}, \quad P_{-1} = \frac{2L a_0}{\gamma}, \quad q^*_{-2} = \frac{L}{\gamma} (L_{\alpha\alpha} - \frac{L a_0}{\alpha}),
q^*_{-1} = \frac{L a_0}{\alpha}, \quad q^*_3 = \frac{L a_0}{\alpha\gamma}, \quad q_{-2} = \frac{L a_0}{\gamma}, \quad q_{-4} = \frac{L}{\gamma} \left(L_{\gamma\gamma} - \frac{2L a_0}{\gamma} \right),
q_0 = L L_{\beta\beta},
\]

In (2.5) the subscripts of coefficients \(P^*_0, P_{-1}, q^*_{-2}, q^*_{-1}, q^*_3, q_{-2}, q_{-4} \) and \(q_0 \) are used to indicate respective degrees of homogeneity.

Again ,

\[
g_{ij} = h_{ij} + l_i l_j
\]

\[
g_{ij} = a_{ij}(x) P^*_0 + P_{-1} a_{ij}(x, y) + \left(q^*_{-2} + \frac{L^2}{\alpha^2} \right) y_i y_j
+ \left(q^*_{-1} + \frac{L a_0 L a_0}{\alpha} \right) (y_i b_j + y_j b_i) + \left(q^*_{-3} + \frac{L a_0 L a_0}{\alpha\gamma} \right) (a_i y_j + a_j y_i)
+ \left(q_{-2} + \frac{L a_0 L a_0}{\gamma} \right) (a_i b_j + a_j b_i) + \left(q_{-4} + \frac{L^2}{\gamma^2} \right) a_i a_j
+ (q_0 + L^2 b_i b_j)
\]

If ,

\[
(q^*_{-2} + \frac{L^2}{\alpha^2}) = P^*_{-2}, \quad (q^*_{-1} + \frac{L a_0 L a_0}{\alpha}) = P^*_{-1},
(q^*_{-3} + \frac{L a_0 L a_0}{\alpha\gamma}) = P^*_{-3}, \quad (q_{-2} + \frac{L a_0 L a_0}{\gamma}) = P_{-2},
\]
\[
\left(q + \frac{L^2}{\gamma^2} \right) = P_{-4}, \quad \left(q_0 + L_0^2 \right) = P_0,
\]
then, we have,
\[
g_{ij} = P_0^* a_{ij}(x) + P_{-1} a_{ij}(x, y) + P_{-2} y_i y_j + P_{-4} (y_i b_j + y_j b_i) \\
+ P_{-3} (a_i y_j + a_j y_i) + P_{-2} (a_i b_j + a_j b_i) + P_{-4} a_i a_j + P_0 b_i b_j
\]
Since we know that \(\frac{\partial \gamma}{\partial y_i} = a_i \gamma \) and from \(\frac{\partial \gamma}{\partial \eta} = \frac{y_i}{\gamma} \), then we get \(a_i = \gamma y_i \). By using \(a_i = \gamma y_i \), we find,
\[
g_{ij} = P_0^* a_{ij}(x) + P_{-1} a_{ij}(x, y) + a_i a_j \left(P_{-2} \gamma^{-2} + 2 \frac{P_{-4}}{\gamma^2} \right) \\
+ \left(\frac{P_{-1}}{\gamma} + P_{-2} \right) (a_i b_j + a_j b_i) + P_0 b_i b_j
\]
where we put,
\[
S_{-4} = P_{-2} \gamma^{-2} + 2 \frac{P_{-4}}{\gamma^2} + P_{-4}
\]
\[
S_{-2} = \frac{P_{-2}}{\gamma} + P_{-2}
\]
then we have,
\[
g_{ij} = P_0^* a_{ij}(x) + P_{-1} a_{ij}(x, y) + S_{-4} a_i a_j + S_{-2} (a_i b_j + a_j b_i) + P_0 b_i b_j \tag{2.6}
\]
We know that,
\[
g^{hj} g_{ij} = \delta^h_i
\]
Then ,the reciprocal tensor of \(g_{ij} \) is given by,
\[
g^{ij} = \frac{a_i a_j}{\gamma} - \frac{a^i a^j}{\gamma} \left(\frac{\pi_{-3} S_{-4} - \pi_{-2} S_{-2}}{\gamma} \right) - b^i b^j \left(\frac{\pi P_0 - \pi S_{-2}}{\gamma} \right)
\]
\[-a'^{i}b'^{j}\frac{(\pi_{-1}S_{-2} - \tau_{-1}P_{0})}{J} - a^{i}b^{j}\frac{(\tau S_{-2} - \pi S_{-4})}{J}\]

Where, \(J = P_{0}^{*} + P_{-1}, \quad \tau = P_{0}^{*} + P_{-1} + \gamma^{3}S_{-4} + S_{-2}\beta \)

\[\pi = S_{-2}\gamma^{3} + P_{0}\beta, \quad \tau_{-1} = \beta S_{-4} + S_{-2}b^{2}\]

\[\pi_{-1} = P_{0}^{*} + P_{-1} + S_{-2}\beta + P_{0}b^{2}, \quad d = \frac{1}{\pi_{-1} - \pi_{-1}}\]

\[g^{ij} = S_{1}a'^{i}a'^{j} - S_{2}a'^{i}a'^{j} - S_{3}b'^{i}b'^{j} - S_{4}(a'^{i}b'^{j} + a'^{j}b'^{i})\]

(2.7)

Where,

\[S_{1} = \frac{1}{J}, \quad S_{2} = \frac{(\pi_{-1}S_{-4} - \tau_{-1}S_{-2})}{J},\]

\[S_{3} = \frac{(\tau P_{0} - \pi S_{-4})}{J}, \quad S_{4} = \frac{(\pi_{-1}S_{-2} - \tau_{-1}P_{0})}{J} = \frac{(\tau S_{-2} - \pi S_{-4})}{J}\]

where,

\[(\pi_{-1}S_{-2} - \tau_{-1}P_{0}) = (\tau S_{-2} - \pi S_{-4})\]

\[(\pi_{-1}S_{-2} - \tau_{-1}P_{0}) = (\tau S_{-2} - \pi S_{-4}) = \frac{P_{0}^{*}P_{-1}}{\gamma} + \frac{P_{-1}P_{0}^{*}}{\gamma} + \beta\left(\frac{P_{0}^{*}}{\gamma}\right)^{2} +

2\beta\frac{P_{0}^{*}P_{-1}}{\gamma} + P_{0}^{*}P_{-2} + P_{-1}P_{-2} + \beta(P_{-2})^{2} - \beta\frac{P_{0}^{*}P_{-1}}{\gamma} - 2\beta\frac{P_{0}^{*}P_{-1}}{\gamma} - \beta P_{0}P_{-4}\]

Theorem (2.1) The angular metric tensor \(h_{ij} \), the fundamental tensor \(g_{ij} \) and its reciprocal tensor \(g^{ij} \) of \((\alpha, \beta, \gamma)\) – metric are given by equations (2.5), (2.6) and (2.7) respectively.

3. The Hypersurfaces \(F^{n-1}(c) \)
In this section we have considered a special \((\alpha, \beta, \gamma)\) – metric with a gradient \(b_i(x) = \partial_i b\) for a scalar function \(b(x)\) and consider a hypersurface \(F^{n-1}(c)\) which is given by the equation \(b(x) = c\) (constant).

Since the parametric equation of \(F^{n-1}(c)\) is \(x^i = x^i(u^\alpha)\), hence, \((\partial/\partial u^\alpha) b(x(u)) = b_i(x) X^i_\alpha\), where \(b_i(x)\) are considered as covariant components of a normal vector field of \(F^{n-1}(c)\). Therefore, along the \(F^{n-1}(c)\), we have,

\[b_i X^i_\alpha = 0 \quad \text{and} \quad b_i y^i = 0 \quad (3.1) \]

In general, the induced metric \(L(u, v)\) given by,

\[L(u, v) = L \left(\left(a_{\alpha\beta} (u) v^\alpha v^\beta \right)^{\frac{1}{2}}, \left(a_{\alpha\beta\gamma} (u) v^\alpha v^\beta v^\gamma \right)^{\frac{1}{3}} \right), \]

\[(3.2) \]

where,

\[a_{\alpha\beta} (u) = a_{ij} (x(u)) X^i_\alpha X^j_\beta \quad \text{and} \quad a_{\alpha\beta\gamma} (u) = a_{ijk} (x(u)) X^i_\alpha X^j_\beta X^k_\gamma \]

By using equation (3.1) and (2.7), we have,

\[g^{ij} b_i b_j = b^2 (S_1 - S_3 b^2), \quad \text{where} \quad b^2 = a^{ij} b_i b_j \]

Hence we get,

\[b_i = b \sqrt{S_1 - b^2 S_3} N_i \]

\[(3.3) \]

Hence from (2.7) and (3.3) we get,

\[b^i = a^{ij} b_j = \frac{b}{\sqrt{S_1 - b^2 S_3}} N^i + \left(\frac{b^2 S_1}{S_1 - b^2 S_3} \right) a^i \]

\[(3.4) \]
Theorem (3.1). Let F^n be a Finsler space with α, β, γ – metric (2.1) and $b_i(x) = \partial b(x)$ and $F^{n-1}(c)$ be a hypersurface of F^n given by $b(x) = c$ (constant). If the Riemannian metric $a_{ij}(x) \, dx^i dx^j$ be positive definite and b_i is a non-zero field, then the induced metric of $F^{n-1}(c)$ is a Riemannian metric given by (3.2) and relations (3.3) and (3.4) hold.

References

11. Shukla,Suresh, K. and Pandey, P. N., :Lagrange Spaces with (γ, β)–Metric, Department of Mathematic University of Allahabad, geometry, Vol. 2013, Article Id 106393, (7 pages), (2013).

13. Wagner, V. V., : Two-dimensional space with the metric defined by a cubic differential form , (Russian and English) Abh. Tscherny, Staatuniv,Saratow., 1
8 R.K. Pandey and Neetu Singh

(1938), (29-40).

15. Wagner, J. M., : Untersuchung der zwei- und dreidimensionalen Finslerschen Raume mit der Grundform \(L = (a_{ijk} x^i x^j x^k)^{1/3} \), Akad. Wissenschaft. Proc., 38 (1935).